Allocation Rules and District Magnitude

Formulae:

Plurality: $s = v_1$ where s stands for the number of seats in the district which go to the party that has the highest party vote total $(v_1 > v_2 > v_3 \dots v_k)$

Hare: $q_0 = V/M$ where V stands for the total votes in a district divided by the number of seats (M) to yield the number of votes entitled to a seat (q_0)

Droop: $q_1 = V/(M+1)$ where V stands for the total votes in a district divided by the number of seats (M) plus one to yield the number of votes entitled to a seat (q_1)

d'Hondt: a = v/(s + 1) where v stands for a party's votes divided by the number of seats (s) already allocated plus one to yield the party average (a) with a set of successive divisors (1,2,3,4)

1. Question (make sure to show your work):

For a district of M = 3 with four parties competing and a percent vote distribution among them of 41-35-15-9, determine the allocation of seats using the following allocation rules:

	Party A (41%)	Party B (35%)	Party C (15%)	Party D (9%)
Plurality	3	0	0	0
Hare (largest remainders)	1	1	1	0
Droop (largest remainders)) 2	1	0	0
d'Hondt	2	1	0	0

Allocation Rules and District Magnitude

2. Question (make sure to show your work):

For a district of M = 20 with four parties competing and a percent vote distribution among them of 41-35-15-9, determine the allocation of seats using the following allocation rules:

	Party A (41%)	Party B (35%)	Party C (15%)	Party D (9%)
Plurality	20	0	0	0
Hare (largest remainders)	8	7	3	2
Droop (largest remainders) 8	7	3	2
d'Hondt	9	7	3	1